首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   772篇
  免费   46篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   9篇
  2016年   19篇
  2015年   19篇
  2014年   25篇
  2013年   36篇
  2012年   45篇
  2011年   45篇
  2010年   37篇
  2009年   32篇
  2008年   43篇
  2007年   42篇
  2006年   23篇
  2005年   41篇
  2004年   42篇
  2003年   37篇
  2002年   43篇
  2001年   26篇
  2000年   37篇
  1999年   25篇
  1998年   12篇
  1997年   4篇
  1995年   5篇
  1994年   4篇
  1993年   9篇
  1992年   11篇
  1991年   15篇
  1990年   13篇
  1989年   17篇
  1988年   5篇
  1987年   12篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   9篇
  1982年   3篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1974年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有818条查询结果,搜索用时 15 毫秒
101.
102.

Background  

To determine the prevalence of abnormal findings on brain magnetic resonance (MR) examinations in adult participants of brain docking in order to assess its usefulness.  相似文献   
103.
ISG15 is a ubiquitin-like protein that is upregulated on treatment with interferon. ISG15 is considered to be covalently conjugated to cellular proteins through a sequential reaction similar to that of the ubiquitin conjugation system consisting of E1/E2/E3 enzymes: UBE1L and UbcH8 have been reported to function as E1 and E2 enzymes, respectively, for ISG15 conjugation. Several cellular proteins have been identified as targets for ISG15 conjugation, but the roles of ISG15 conjugation remain unclear. In this study, we found that UbcH6 and UbcH8, E2 enzymes for ubiquitin conjugation, are covalently modified by ISG15. We also found that UbcH6 is capable of forming a thioester intermediate with ISG15 through Cys131. We determined that the Lys136 residue near the catalytic site Cys131 is the ISG15 conjugation site in UbcH6. We isolated ISG15-modified and unmodified UbcH6 proteins, and analyzed their abilities to form thioester intermediates with ubiquitin. A ubiquitin thioester intermediate was detected in the case of unmodified UbcH6, but not in that of ISG15-modified UbcH6, strongly suggesting that ISG15 conjugation to UbcH6 suppresses its ubiquitin E2 enzyme activity. Thus, we provide evidence for a link between the ubiquitin conjugation system and the ISG15 conjugation system.  相似文献   
104.
Myosin IXb, a member of the myosin superfamily, is a molecular motor that possesses a GTPase activating protein (GAP) for Rho. Through the yeast two-hybrid screening using the tail domain of myosin IXb as bait we found BIG1, a guanine nucleotide exchange factor for ADP-ribosylation factor (Arf1), as a potential binding partner for myosin IXb. The interaction between myosin IXb and BIG1 was demonstrated by co-immunoprecipitation of endogenous myosin IXb and BIG1 with anti-BIG1 antibodies in normal rat kidney cells. Using the isolated proteins, it was demonstrated that myosin IXb and BIG1 directly bind to each other. Various truncation mutants of the myosin IXb tail domain were produced, and it was revealed that the binding region of myosin IXb to BIG1 is the zinc finger/GAP domain. Interestingly, the GAP activity of myosin IXb was significantly inhibited by the addition of BIG1 with IC(50) of 0.06 microm. The RhoA binding to myosin IXb was inhibited by the addition of BIG1 with the concentration similar to the inhibition of the GAP activity. Likewise, RhoA inhibited the BIG1 binding of myosin IXb. These results suggest that BIG1 and RhoA compete with each other for the binding to myosin IXb, thus resulting in the inhibition of the GAP activity by BIG1. The present study identified BIG1, the Arf guanine nucleotide exchange factor, as a new binding partner for myosin IXb, which inhibited the GAP activity of myosin IXb. The findings raise a concept that the myosin transports the signaling molecule as a cargo that functions as a regulator for the myosin molecule.  相似文献   
105.
Saito K  Oda M  Sarai A  Azuma T  Kozono H 《Biochemistry》2004,43(31):10186-10191
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.  相似文献   
106.
We studied the effect of deuterium oxide (D(2)O) on contraction characteristics and ATPase activity of single glycerinated muscle fibers of rabbit psoas. D(2)O increased the maximum isometric force P(0) by about 20%, while the force versus stiffness relation did not change appreciably. The maximum shortening velocity under zero load V(max) did not change appreciably in D(2)O, so that the force-velocity (P-V) curve was scaled depending on the value of P(0). The Mg-ATPase activity of the fibers during generation of steady isometric force P(0) was reduced by about 50% in D(2)O. Based on the Huxley contraction model, these results can be accounted for in terms of D(2)O-induced changes in the rate constants f(1) and g(1) for making and breaking actin-myosin linkages in the isometric condition, in such a way that f(1)/(f(1)+g(1)) increases by about 20%, while (f(1)+g(1)) remains unchanged. The D(2)O effect at the molecular level is discussed in connection with biochemical studies on actomyosin ATPase.  相似文献   
107.
Enoki S  Saeki K  Maki K  Kuwajima K 《Biochemistry》2004,43(44):14238-14248
Green fluorescent protein from the jellyfish Aequorea victoria can serve as a good model protein to understand protein folding in a complex environment with molecular chaperones and other macromolecules such as those in biological cells, but little is known about the detailed mechanisms of the in vitro folding of green fluorescent protein itself. We therefore investigated the kinetic refolding of a mutant (F99S/M153T/V163A) of green fluorescent protein, which is known to mature more efficiently than the wild-type protein, from the acid-denatured state; refolding was observed by chromophore fluorescence, tryptophan fluorescence, and far-UV CD, using a stopped-flow technique. In this study, we demonstrated that the kinetics of the refolding of the mutant have at least five kinetic phases and involve nonspecific collapse within the dead time of a stopped-flow apparatus and the subsequent formation of an on-pathway intermediate with the characteristics of the molten globule state. We also demonstrated that the slowest phase and a major portion of the second slowest phase were rate-limited by slow prolyl isomerization in the intermediate state, and this rate limitation accounts for a major portion of the observed kinetics in the folding of green fluorescent protein.  相似文献   
108.
109.
Fluorescence resonance energy transfer between points on tropomyosin (positions 87 and 190) and actin (Gln-41, Lys-61, Cys-374, and the ATP-binding site) showed no positional change of tropomyosin relative to actin on the thin filament in response to changes in Ca2+ concentration (Miki et al. (1998) J. Biochem. 123, 1104-1111). This is consistent with recent electron cryo-microscopy analysis, which showed that the C-terminal one-third of tropomyosin shifted significantly towards the outer domain of actin, while the N-terminal half of tropomyosin shifted only a little (Narita et al. (2001) J. Mol. Biol. 308, 241-261). In order to detect any significant positional change of the C-terminal region of tropomyosin relative to actin, we generated mutant tropomyosin molecules with a unique cysteine residue at position 237, 245, 247, or 252 in the C-terminal region. The energy donor probe was attached to these positions on tropomyosin and the acceptor probe was attached to Cys-374 or Gln-41 of actin. These probe-labeled mutant tropomyosin molecules retain the ability to regulate the acto-S1 ATPase activity in conjunction with troponin and Ca2+. Fluorescence resonance energy transfer between these points of tropomyosin and actin showed a high transfer efficiency, which should be very sensitive to changes in distance between probes attached to actin and tropomyosin. However, the transfer efficiency did not change appreciably upon removal of Ca2+ ions, suggesting that the C-terminal region of tropomyosin did not shift significantly relative to actin on the reconstituted thin filament in response to the change of Ca2+ concentration.  相似文献   
110.
Extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteases (MMPs) play an essential role in the repair of infarcted tissue, which affects ventricular remodeling after myocardial infarction. ADAMTS1 (A disintegrin and metalloprotease with thrombospondin motifs), a newly discovered metalloprotease, was originally cloned from a cancer cell line, but little is known about its contribution to disease. To test the hypothesis that ADAMTS1 appears in infarcted myocardial tissue, we examined ADAMTS1 mRNA expression in a rat myocardial infarction model by Northern blotting, real-time RT-PCR and in situ hybridization. Normal endothelium expressed little ADAMTS1 mRNA, while normal myocardium expressed no detectable ADAMTS1 mRNA. Up-regulation of ADAMTS1 was demonstrated by Northern blot analysis and real-time RT-PCR at 3 h after coronary artery ligation. In situ hybridization revealed strong ADAMTS1 mRNA signals in the endothelium and myocardium in the infarcted heart, mainly in the infarct zone, at 3 h after myocardial infarction. The rapid and transient up-regulation of the ADAMTS1 gene in the ischemic heart was distinct from the regulatory patterns of other MMPs. Our study demonstrated that the ADAMTS1 gene is a new early immediate gene expressed in the ischemic endothelium and myocardium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号